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Recent studies have shown that tissue-specific stem cells (SCs) found throughout the body respond differ-
entially to DNA damage. In this review, we will discuss how different SC populations sense and functionally
respond to DNA damage, identify various common and distinct mechanisms utilized by tissue-specific SCs
to address DNA damage, and describe how these mechanisms can impact SC genomic integrity by poten-
tially promoting aging, tissue atrophy, and/or cancer development. Finally, we will discuss how similar mech-
anisms operate in cancer stem cells (CSCs) and can mediate resistance to chemo- and radiotherapy.
Stem cells (SCs) are often referred to as the mother of all cells,

meaning they sit at the apex of a cellular hierarchy and, upon

differentiation, give rise to all the mature cells of a tissue (Rossi

et al., 2008). More specifically, SCs are described as having

the unique capacity to self-renew, in order to establish and

replenish the SC pool, and also to differentiate, thereby gener-

ating progeny that carry out specific tissue functions. SCs are

essential for specification and morphogenesis of tissues during

embryonic development (organogenesis) and for the mainte-

nance and repair of adult tissues throughout life by replacing

cells lost during normal tissue turnover (homeostasis) or after

injury. Although tissue-specific SCs are found in many highly

regenerative organs, such as blood, skin, and the digestive tract,

they are also found in nonrenewing organs such as muscle,

where they allow repair after tissue damage.

Like every other cell in the body, SCsmust constantly contend

with genotoxic insults arising from both endogenous chemical

reactions, such as reactive oxygen species (ROS) generated

by cellular metabolism, and exogenous insults coming from their

surrounding environment (Sancar et al., 2004). It has been esti-

mated that every cell undergoes about 100,000 spontaneous

DNA lesions per day (Lindahl, 1993). As SCs ensure the lifetime

maintenance of a given tissue, anymisrepair of DNA damage can

be transmitted to their differentiated daughter cells, thereby

compromising tissue integrity and function. Consequently,

mutations that diminish the renewal and/or differentiation poten-

tial of SCs can result in tissue atrophy and aging phenotypes,

whereas mutations providing a selective advantage to the

mutated cells can lead to cancer development (Rossi et al.,

2008).

As such, a delicate balance must be struck to prevent exhaus-

tion and transformation of the SC pool while maintaining the

ability of SCs to preserve homeostasis and to respond to injury

when necessary. To fulfill these demands, the numbers of SCs

and their functional quality must be strictly controlled through

a balance of cell-fate decisions (self-renewal, differentiation,

migration, or death), which are mediated by a complex network

of cell-intrinsic regulation and environmental cues (He et al.,

2009; Weissman, 2000). Specific protective mechanisms also
16 Cell Stem Cell 8, January 7, 2011 ª2011 Elsevier Inc.
ensure that SC genomic integrity is well preserved and include

localization to a specific microenvironment, resistance to

apoptosis, limitation of ROS production, and maintenance in

a quiescent state (Orford and Scadden, 2008; Rossi et al.,

2008). Altogether, these attributes of SCs ensure tissue mainte-

nance and function throughout the lifetime of an organism, while

limiting atrophy and cancer development.

DNA-Damage Response
All living cells, including tissue-specific SCs, must constantly

contend with DNA damage (Sancar et al., 2004) (Figure 1). Due

to its chemical structure, DNA is particularly sensitive to sponta-

neous hydrolysis reactions which create abasic sites and base

deamination. Furthermore, ongoing cellular metabolism gener-

ates ROS and their highly reactive intermediate metabolites,

which can create 8-oxoguanine lesions in DNA as well as

a variety of base oxidations and DNA strand breaks that are all

highly mutagenic and can lead to genomic instability. DNA is

also constantly assaulted by mutagens present in the external

environment. UV light from the sun, as well as various chemical

reagents, can react with DNA and induce nucleotide chemical

modifications. Ionizing radiations (IR) generated by the cosmos,

X-rays, and exposure to radioactive substances, as well as treat-

ment with certain chemotherapeutic drugs, can induce base

modifications, interstrand crosslinks, single- and double-strand

breaks (DSBs), which can all lead to genomic instability.

Consistent with the wide diversity of potential DNA lesions,

eukaryotic cells exhibit many highly conserved DNA repair

mechanisms that can recognize and repair different types of

DNA damage with varying fidelity and mutagenic consequences

(Lombard et al., 2005) (Figure 1). For instance, base modifica-

tions induced by spontaneous chemical reactions and ROS-

mediated DNA lesions are repaired by base excision repair

(BER), whereas nucleotide modifications induced by chemicals

and UV light are repaired by the nucleotide excision repair

(NER) pathway. The pathways that mediate the repair of DSBs

vary depending on the cell-cycle status of the damaged cells.

During the G0/G1 phase, DSBs are repaired by the nonhomolo-

gous end-joining (NHEJ) pathway, while, during the S-G2/M
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Figure 1. DNA-Repair Pathways in Mammalian Cells
Each type of DNA assault results in a different type of lesion, which can be repaired with different fidelity by distinct and highly specialized repair pathways.
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phase, these lesions are repaired by the homologous recombi-

nation (HR) pathway. These two modes of DNA repair are not

equally faithful. HR is an error-free DNA repair mechanism due

to the use of the other intact strand as a template, while NHEJ

is an error-prone repair mechanism, which may result in small

deletions, insertions, nucleotide changes, or chromosomal

translocations due to the absence of an intact template for

repair. Lastly, replication errors leading to insertion, deletion,

and base misincorporation resulting in base mispairing are cor-

rected by the mismatch repair (MMR) pathway.

Irrespective of the type of lesion and the repair mechanism,

DNA damage is rapidly sensed and activates evolutionarily

conserved signaling pathways, known collectively as the DNA-

damage response (DDR), whose components can be separated

into four functional groups: damage sensors, signal transducers,

repair effectors, and arrest or death effectors (Sancar et al.,

2004) (Figure 2). Ultimately, activation of DDR leads to the

phosphorylation and stabilization of p53, inducing its nuclear

accumulation and upregulation of its target genes (d’Adda di

Fagagna, 2008). Depending upon the extent of DNA damage,

the type of cell undergoing DNA damage, the rapidity of DNA

repair, the stage of the cell cycle, the strength and the duration

of p53 activation, and the genes transactivated by p53, cells
can either undergo transient cell-cycle arrest (through induction

of the cyclin-dependant kinase inhibitor p21), programmed cell

death (through induction of the pro-apototic bcl2 gene family

members bax, puma and noxa), or senescence (through induc-

tion of the cyclin-dependant kinase inhibitor p16/Ink4a and the

tumor suppressor gene p19/ARF).

Diversity of DNA Repair Mechanisms in Tissue-Specific
Stem Cells
The critical role of the different DNA repair mechanisms for over-

all tissue integrity and function is well illustrated by the severe

clinical consequences observed in both humans and mice for

mutations in genes regulating these pathways (Hakem, 2008).

The involvement of tissue-specific SCs in mediating such symp-

toms and the role of the diverse DNA-damage recognition and

DNA-repair mechanisms in maintaining tissue-specific SC func-

tion is now starting to emerge (Kenyon and Gerson, 2007).

Defects in DSB recognition machinery lead to premature

aging, neurodegeneration, and increased cancer susceptibility.

ATM (ataxia-telengiectasia mutated), ATR (ATM and Rad3

related), and DNA-PKs are DNA-damage-sensing protein

kinases that, through a series of phosphorylation events, signal

the presence of DNA lesions and initiate DNA repair or cell-cycle
Cell Stem Cell 8, January 7, 2011 ª2011 Elsevier Inc. 17
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Pathways
Upon DNA damage, distinct factors detect, trans-
mit, and amplify the DNA-damage signal. DNA
double-strand breaks can be repaired by homolo-
gous recombination (mediated among other
factors by the MRN complex, ATM, and Brca1)
or by nonhomologous end-joining (in which the
Ku70/Ku80/DNA-PKcs complex plays a major
role). This DNA-damage response converges
upon p53 which, depending on the target genes
activated, regulates different cellular outcomes.
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arrest (Figure 2). Patients with mutations in ATM present blood

vessel abnormalities, cerebelar degeneration, immunodefi-

ciency, and increased risk of cancers (Hoeijmakers, 2009).

Mice lacking Atm, like ATM patients, are extremely sensitive to

IR exposure and have decreased somatic growth, neurological

abnormalities, decreased T cell numbers, and exhibit premature

hair graying and infertility (Barlow et al., 1996). Many of these

phenotypes can be linked to defects in SC function, which high-

lights the critical role of this DDR component for the survival and

preservation of various SC compartments. Atm-deficient hema-

topoietic SCs (HSCs) harbor increased ROS levels and display

an overall decrease in number and function over time, leading

to eventual hematopoietic failure (Ito et al., 2004, 2006).Atm defi-

ciency also sensitizes mice to IR-induced prematuremelanocyte

SC differentiation, resulting in hair graying (Inomata et al., 2009).

Germ cell development is also altered in Atm-deficient mice, and

mutant animals experience a progressive loss in germ SCs

(spermatogonia) and become infertile (Takubo et al., 2008).

Mutations in ATR also cause developmental defects in mice

(pregastrulation lethality) and humans (Seckel syndrome)

(Hakem, 2008; Hoeijmakers, 2009; Seita et al., 2010). Condi-

tional deletion of Atr in adult mice leads to the rapid appearance
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of age-related phenotypes, such as hair

graying, alopecia, kyphosis, osteopo-

rosis, thymic involution, and fibrosis,

which are associated with SC defects

and exhaustion of tissue renewal and

homeostatic capacity (Brown and Balti-

more, 2000; Ruzankina et al., 2007).

The MRE11, RAD50, and NBS1 (MRN)

complex senses DSBs, unwinds the

damaged region of DNA, serves as part

of the repair scaffolding, and induces

downstream signaling including ATM

activation (Figure 2). Deletion of any

component of the MRN complex results

in embryonic lethality in mice (Hakem,

2008). However,micebearing ahypomor-

phic Rad50k22m mutation are viable but

die around 2.5 months from of B cell

lymphoma or bone marrow failure due,

in part, to p53-dependent DDR-mediated

apoptosis and loss of HSC function

(Bender et al., 2002). Moreover, muta-

tions in BRCA1 and BRCA2, two DSB

mediators that trigger DNA repair through
the HR pathway (Figure 2), lead to a major increase in the risk of

developing breast and ovarian cancers in women, which, at least

in the breast, has recently been linked to the accumulation of

genetically unstable mammary SCs (Liu et al., 2008).

While no spontaneous mutations in NHEJ pathway compo-

nents have been reported so far in human syndromes associated

with premature aging or increased risk of cancers, the inactiva-

tion of various NHEJ genes in mice has demonstrated their

essential function in lymphocyte development and prevention

of lymphoma. The core components of the NHEJ repair pathway

include the end-binding and end-processing proteins Ku70,

Ku80, DNA-PKcs, and Artemis, as well as the ligation complexes

XRCC4, LigIV, and Cerrunos (Lombard et al., 2005). As NHEJ is

critical for V(D)J recombination during lymphocyte maturation,

many of the mutant mouse models deficient in particular NHEJ

components exhibit arrested lymphoid development. Mice

carrying a Lig4y288c hypomorphic mutation also display growth

retardation, immunodeficiency, and pancytopenia associated

with severe HSC defects (Kenyon and Gerson, 2007; Nijnik

et al., 2007). Mice lacking the end-binding and end-processing

components of NHEJ, Ku70, and Ku80 have stress-induced

HSC self-renewal defects associated with poor transplantability,
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increased apoptosis, decreased proliferation, and impaired

lineage differentiation (Kenyon and Gerson, 2007; Rossi et al.,

2007).

Mutations in NER pathway components induce human

syndromes known as Xeroderma Pigmentosum (XP), Cockayne

syndrome (CS), and Trichothiodistrophy (TTD), which are char-

acterized by premature aging, neurodegeneration, and extreme

photosensitivity, especially in XP syndromes (Hoeijmakers,

2009). XP patients often completely lack NER repair activity

and have increased incidence of skin cancer, while CS and

TTD patients have defects in transcription-coupled repair, which

has little mutagenic effect because it only deals with lesions in

the transcribed strand. Mice expressing XPDTTD, a mutated

formof an essential NER component, have decreasedHSC func-

tionwith reduced self-renewal potential and increased apoptosis

levels (Rossi et al., 2007). Mice deficient in Ercc1, a component

of both NER and intrastrand crosslink (ICL) repair, die within

4 weeks of birth, have multilineage hematopoietic cytopenia

due to progenitor depletion, HSC senescence, and a defective

response to DNA crosslinking by mitomycin C (Hasty et al.,

2003; Prasher et al., 2005).

Mutations in MMR pathway components induce hereditary

nonpolyposis human colorectal cancer known as Lynch

syndrome, which presents with about an 80% lifetime risk of

developing colorectal cancers as well as other malignancies

(Hoeijmakers, 2009). Mice mutant for genes important for the

MMR pathway, including Msh2 and Mlh1, also display higher

frequencies of hematological, skin, and gastrointestinal tumors,

consistent with a critical role of the MMR in preventing accumu-

lations of oncogenic mutations (Hakem, 2008). In addition, mice

lacking Msh2 exhibit defective HSC activity, with enhanced

microsatellite instability observed in their progeny (Reese et al.,

2003).

Other human conditions associated with defects in DNA-

damage recognition and repair pathways include Fanconi’s

Anemia (genetic defects in the FANC family of proteins), Bloom’s

or Werner’s syndromes (both caused by mutations in DNA heli-

cases), and a range of diseases associated with telomerase

dysfunction and telomere instability (Kenyon and Gerson,

2007). These diseases are not specifically reviewed here, but

their complex pathologies involve defects in various tissue-

specific SCs.

DNA-Damage Response in Tissue-Specific SCs
While tissue-specific SCs share the same purpose of maintain-

ing organ functionality, recent studies have shown that the

mechanisms of their responses to DNA damage, the outcome

of their DDR, and the consequences of DNA repair for their

genomic stability vary greatly between tissues.

Hematopoietic SCs

The hematopoietic (blood) system is one of the best-studied

adult tissues in terms of its hierarchical development, in that all

blood cell lineages derive from a small number of quiescent

HSCs via a highly proliferative amplifying progenitor compart-

ment (Orkin and Zon, 2008). Being a highly regenerative

compartment, it is also one of the most radiosensitive tissues

in the body (<4 Gy), and one of the first organ systems to fail after

total body irradiation. IR exposure differentially affects hemato-

poietic cells depending on their state of maturity, with HSCs
being more radioresistant than their downstream progeny

(Meijne et al., 1991). By comparing thewayHSCs and their differ-

entiated progeny respond to low doses of IR (2 to 3 Gy), recent

work has begun to clarify the ways in which HSCs at different

stages of ontogeny deal with DNA damage and the mutagenic

consequences of different DNA repair mechanisms in this

tissue-specific SC population (Figure 3A).

HSCs are specified in the aorta-gonad-mesonephros (AGM)

region of the developing fetus, are actively expanded in several

anatomic locations, including the liver and placenta, during fetal

development, and are finally seeded in the bone marrow cavity

during late embryogenesis. In the bone marrow, HSCs progres-

sively mature after birth to become the quiescent adult HSCs

that are maintained during the lifetime of the organism. Fetal

and adult HSCs differ in many aspects of their biological regula-

tion, including cell-cycle status and transcriptional control (Orkin

and Zon, 2008). Using human umbilical cord blood (CB)-derived

HSCs, which are highly proliferative, circulating cells that are still

considered to be of fetal origin, Milyavsky and colleagues found

that irradiated (3 Gy) CB-derived HSCs had a slower rate of DSB

repair than more mature progenitors and increased levels of

apoptosis mediated in part through the ASPP1 protein, which

could be reversed if p53 expression was silenced or bcl2 expres-

sion was enhanced (Milyavsky et al., 2010). Upon primary trans-

plantation, irradiated CB-derived HSCs could not successfully

engraft into immunodeficient mice. In contrast, irradiated cells

with disabled p53 or bcl2 overexpression could be serially trans-

planted, albeit with decreased efficiency compared to nonirradi-

ated normal cells. In this context, transplanted CB-derived HSCs

with disabled p53 reconstituted even less well than cells with

bcl2 overexpression, and their progeny harbored high levels of

DSBs that were not observed in the progeny of bcl2 overex-

pressing cells. This study emphasizes the role of p53-mediated

DDR and the Bcl2 family of prosurvival genes in HSC function

(Asai et al., 2010; Seita et al., 2010; Weissman, 2000), and indi-

cates that the main outcome of the DDR in fetal HSCs is induc-

tion of apoptosis and overt cell elimination (Figure 3A). On the

other hand, using adult mouse HSCs that are kept mostly quies-

cent within the bone marrow cavity, Mohrin and colleagues

showed a very different response to irradiation, with overt cell

survival and DNA repair being the main outcomes of the DDR

(Mohrin et al., 2010). Adult HSCs, either quiescent or induced

to proliferate by cytokine pretreatment, engage specialized

response mechanisms that protect them from low doses of IR

(2 Gy). In quiescent HSCs, these mechanisms include enhanced

prosurvival gene expression (bcl2, bcl-xl, mcl1, a1), which

inhibits cell death induced by p53 proapototic genes (bax,

noxa, puma), likely allowing p53-mediated induction of p21 to

engage a transient growth-arrest response and to permit DNA

repair. While the exact mechanism of the survival response in

proliferating HSCs is less clear, they were found to be as radio-

resistant as quiescent HSCs (Mohrin et al., 2010). Dictated by

their cell-cycle status, proliferating HSCs use the high-fidelity

HR pathway to repair DSBs, while quiescent HSCs employ the

error-prone NHEJ pathway. Irradiated quiescent HSCs display

high levels of chromosomal abnormalities when compared to

proliferating HSCs, and their progeny show persistent genomic

instability associated with misrepaired DNA and engraftment

defects in secondary recipient mice. Since NHEJ appears to
Cell Stem Cell 8, January 7, 2011 ª2011 Elsevier Inc. 19
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Figure 3. DNA-Damage Response in Hematopoietic and Hair Follicle Bulge Stem Cells
(A) Human umbilical cord blood-derived HSCs and mouse bone marrow-derived HSCs exhibit opposite outcomes following irradiation-induced DNA damage,
with different consequences for their overall maintenance and genomic integrity.
(B) Upon irradiation, mouse hair follicle bulge stem cells exhibit transient p53 activation due, in part, to high levels of DNA-PK-mediated NHEJ repair and higher
Bcl2 expression that block apoptosis, resulting in enhanced survival.
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be the initial andmost commonly used DNA repair mechanism in

quiescent HSCs, these results help explain why most mouse

models lacking functional components of DSB recognition and

repair pathways undergo hematopoietic failure upon genotoxic

stress (Hakem, 2008). Moreover, this study indicates that while

adult HSCs, in contrast to fetal HSCs, may survive DNA-

damaging insults, they do not emerge unscathed (Figure 3A),

which might have direct implications for aging and cancer devel-

opment. It may also explain why cancer patients treated with

radiotherapy or chemotherapy may develop leukemias and

lymphomas (blood cancer) or myelodysplasias (bone marrow

failure) because the use of error-prone DNA repair in quiescent

HSCs may be at the heart of these dangerous side effects of

cancer treatment.

Taken together, these two studies (Milyavsky et al., 2010;

Mohrin et al., 2010) unveil some striking differences in the

outcome of irradiation-induced DDR in HSCs from different

species and at different developmental stages. While it is

possible that different organisms with vastly different lifespans

have evolved distinct strategies to cope with DNA damage, it

is tempting to speculate that these differences reflect an adapta-

tion in the stress responsemechanisms used by HSCs at distinct

stages of ontogeny to ensure optimal function of the blood

system. During embryogenesis and until birth, the goal is to

expand the SC population while protecting its genomic integrity

in order to establish a pool of pristine HSCs that will ensure blood

homeostasis for the lifetime of the organism. In this context, the

efficient elimination of irradiated human CB-derived HSCs

described by Milyavsky and colleagues fulfill this demand by

eliminating damaged fetal HSCs that could be detrimental to

the organism and its reproductive purpose. Conversely, in
20 Cell Stem Cell 8, January 7, 2011 ª2011 Elsevier Inc.
adults, the main function of the HSC compartment is to preserve

blood homeostasis and to quickly respond to hematopoietic

needs (blood loss, infection, etc.). The fact that adult HSCs

reside in hypoxic niches in the BM cavity and are mostly kept

in a quiescent phase of the cell cycle contribute to their overall

maintenance (self-renewal) and protect their genomic integrity

(fitness) by minimizing DNA damage associated with ROS

production, cellular respiration, and cell division (Orford and

Scadden, 2008; Rossi et al., 2007). In this context, the survival

and efficient DNA repair of irradiated mouse adult HSCs

described by Mohrin and colleagues fulfills the same purpose

by protecting the most important cells of the tissue. Since both

quiescent and proliferating mouse adult HSCs show similar

radioresistance, it is likely that the radiosensitivity displayed by

human CB-derived HSCs reflect cell-intrinsic differences in

transcriptional programs or chromatin states between HSCs at

various stages of development. Additional investigations are

clearly needed to fully understand the mechanisms underlying

these differences in DDR outcomes between fetal and adult

HSCs.

However, the short-term survival strategy used by adult HSCs

likely comes at a cost for their long-term genomic integrity. While

quiescence is one of the very mechanisms that protects adult

HSC function, it also renders damaged HSCs intrinsically vulner-

able to mutagenesis because it forces them to use the error-

prone NHEJ pathway to repair DSBs, thereby increasing the

risk of creating mutations in this self-renewing population. In

fact, the accrual of chromosomal translocations resulting from

unfaithful DNA repair following DSBs is a hallmark of human

blood malignancies (Look, 1997). Such accumulation over time

of NHEJ-mediated mutations may hinder cellular performance
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and could be a major contributor to the loss-of-function occur-

ring with age in the HSC compartment and to the development

of age-related hematological disorders (Rossi et al., 2007).

Epidermal SCs

The skin epidermis is composed by the juxtaposition of themany

pilosebaceous units consisting of a hair follicle, its associated

sebaceous gland, and its surrounding interfollicular epidermis.

Different classes of SCs ensure homeostasis of the skin

epidermis (Blanpain and Fuchs, 2009). Multipotent hair follicle

bulge SCs (BSCs) contribute to the cyclic regeneration of the

hair follicle and to the repair of the interfollicular epidermis

following wounding. In the absence of injury, the interfollicular

epidermis can self-renew independently of BSCs through the

presence of unipotent progenitors scattered throughout the

basal region of the epidermis. Specialized SCs and progenitor

cells are also found in the infundibulum and sebaceous glands

(Blanpain and Fuchs, 2009).

Since the epidermis serves as a barrier between the body and

the external environment, it is constantly assaulted by genotoxic

stress such as UV irradiation. As discussed earlier, UV radiation

causes the formation of thymidine dimers, (6-4) pyrimidine

photoproducts, and ROS-induced DNA lesions that are repaired

by the NER, NHEJ, or HR pathways, depending on the type of

damage and the state of the cell cycle. Upon UV irradiation,

basal epidermal cells exhibit sustained p53 activation compared

to the more differentiated suprabasal cells (Finlan et al., 2006).

Following chronic administration of UV radiation, slow-cycling

SCs and progenitor cells of the infundibulum and sebaceous

glands also retain UV-induced photoproducts longer than

more differentiated cells of the epidermis, suggesting a decrease

in the repair activity of these cells (Nijhof et al., 2007). Recently,

Nrf2 has been shown to regulate the expression of critical

regulators of oxidative stress (such as several enzymes of the

glutathione metabolism) and to protect the epidermis from UV-

induced apoptosis. The gradient of apoptosis levels observed

between basal (high) and suprabasal (low) cells following UV irra-

diation is inversely correlated with Nrf2 expression. Surprisingly,

while Nrf2 overexpression protects basal cells from UV induced

apoptosis, it does not decrease the proportion of cells that

harbor thymidine dimers. In addition, suprabasal expression of

Nrf2 offers some protection from UV-induced apoptosis to basal

cells through a paracrine mechanism (Schafer et al., 2010).

These data indicate that proliferative cells of the interfollicular

epidermis are more sensitive to UV-mediated apoptosis relative

to their more committed progeny.

While the skin epidermis is more radioresistant than the blood

system, acute administration of more than 5 Gy results in severe

skin reactions consisting of inflammation (erythema) and loss of

differentiated skin layers (desquamation) that rapidly appear

following IR, whereas hair loss and chronic ulcerations appear

with a delay of 2 to 3 weeks after IR administration. The sensi-

tivity of the epidermis to IR is also illustrated by the common

side effects of radiotherapy, which include acute and chronic

dermatitis and an increased incidence of skin cancer (Gold-

schmidt and Sherwin, 1980). While the field is still in search of

specific cell-surface markers that will allow high purity isolation

of interfollicular epidermal progenitors, a combination of

markers, including a6 integrin and CD71, have been used to

enrich SCs from the mouse and human interfollicular epidermis
(Li et al., 1998; Tani et al., 2000). Following exposure to low

doses of IR, rapidly cycling human epidermal progenitor cells

(a6Hhi/CD71+) undergo apoptosis and display decreased

in vitro colony forming efficiency, whereas slow-cycling human

epidermal SCs (a6H/CD71�) were resistant to IR-induced cell

death (Rachidi et al., 2007). The enhanced survival of human

epidermal SCs upon IR exposure has been linked to a higher

secretion of FGF2 following DNA damage, which increases

DNA repair activity in epidermal SC by autocrine/paracrine

mechanisms (Harfouche et al., 2010). While these studies have

been performed ex vivo, Sotiropoulou and colleagues have

recently investigated how epidermal cells respond to DNA

damage within their native niche and showed that multipotent

hair follicle BSCs, like HSCs, are more resistant to DNA-

damage-induced cell death compared to the other cells of the

epidermis (Sotiropoulou et al., 2010). At least two important

mechanisms contribute to the higher resistance of BSCs to

IR-mediated DNA damage (Figure 3B), both which are indepen-

dent of the relative quiescence of these cells and of the induction

of premature senescence. First, BSCs express higher levels of

the antiapoptotic protein Bcl2, and the proportion of BSCs

undergoing apoptosis is increased in bcl2 null mice, demon-

strating that similar to HSCs, a higher expression of prosurvival

factors contributes to the resistance of BSCs to apoptosis. The

other contributing mechanism is the transient nature of DDR

activation in BSCs. Soon after IR exposure, p53 is expressed

in the nuclei of almost all epidermal cells, including BSCs, and

is required for DNA-damage-induced cell death in the epidermis

(Botchkarev et al., 2000; Song and Lambert, 1999; Sotiropoulou

et al., 2010). However, unlike other cells of the epidermis, the

number of BSCs expressing p53 is greatly decreased by 24 hr

following irradiation, and mutant mice exhibiting sustained

expression of p53 show increased IR-induced apoptosis in

BSCs. This indicates that the short duration of IR-mediated

p53 activation promotes BSC survival following DNA damage.

Interestingly, BSCs also display accelerated DNA repair and

enhancedNHEJ repair activity. In SCIDmice, which have amuta-

tion in DNA-PK and thus exhibit decreased NHEJ activity, BSCs

are radiosensitive, suggesting that accelerated NHEJ-mediated

DSB repair contributes to their protection against IR exposure.

The importance of DDR in BSCs is also illustrated by the SC

exhaustion and progressive alopecia that occurs in mice where

Atr has been deleted in hair follicle BSCs and their progeny

(Ruzankina et al., 2007).

Because NHEJ is an error-prone DNA repair mechanism, the

higher resistance of BSCs to DNA-damage-induced apoptosis

and the accelerated NHEJ-mediated DNA repair activity could

be, like in HSCs, a double-edged sword that promotes short-

term survival of BSCs at the expense of their long-term genomic

integrity and could potentially allow for the accumulation of

cancerous mutations (Figure 4). Consistent with this notion,

SCID mice and mice deficient for Bcl-XL, a prosurvival gene,

show decreased susceptibility to chemical carcinogenesis

(Kemp et al., 1999; Kim et al., 2009), which has been attributed

to the elimination of mutated BSCs by apoptosis.

Melanocyte SCs

Melanocytes are neural crest-derived cells responsible for the

pigmentation of skin and hair. The mature melanocytes respon-

sible for hair color are derived from melanocyte SCs (MSCs),
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which reside in the same niche as hair follicle BSCs. At each

cycle of hair regeneration, MSCs are stimulated to proliferate

and give rise to transit amplifying cells, which will expand in

the lower hair follicle before undergoing terminal differentiation,

which results in the integration of their pigment into the new

hair. At the end of each hair cycle, mature melanocytes undergo

apoptosis and are eliminated with the rest of the follicle, to be

subsequently replenished by the renewal and differentiation of

MSCs during the next cycle (Robinson and Fisher, 2009). Hair

graying, which is one of the most common signs of aging, results

from the depletion of MSCs from the hair follicle. The onset of

hair graying in mice and humans is accompanied by the pres-

ence of ectopically pigmented melanocytes, suggesting prema-

ture differentiation of MSCs within their niche (Nishimura et al.,

2005). Premature hair graying can also result fromahypomorphic

mutation in Mitf, the main regulator of MSC differentiation, that

results in a downregulation of bcl2 and in premature differentia-

tion of MSCs in the hair follicle (McGill et al., 2002). Bcl2 is critical

for MSCmaintenance as bcl2 null mice lose their coat pigmenta-

tion after the first hair cycle due to massive MSC apoptosis

(Nishimura et al., 2005). Premature hair graying and progressive

MSC loss also occur following administration of DNA damaging

agents such as IR, mitomycin C, or hydrogen peroxide (Inomata

et al., 2009). While the mechanisms underlying the DDR in MSCs

are not yet fully understood, p53, p16, and p19ARF, although

transiently activated by DNA damage, are not responsible for

the premature differentiation and loss of MSCs. Indeed, mice

deficient for p53 or the Ink4a locus (p16 and p19ARF) are not pro-

tected fromDNA-damage-induced hair graying, contrasting with

the requirement of p53 in mediating DNA-damage-induced cell

death in other tissue-specific SCs. In contrast, DNA damage

induces prolonged activation of the canonical differentiation

program of MSCs, including sustained upregulation of Mitf,

a key regulator of melanocyte differentiation and melanogenic

enzymes, which in turn stimulates the premature and ectopic
22 Cell Stem Cell 8, January 7, 2011 ª2011 Elsevier Inc.
differentiation of MSCs within their niche. The ATM checkpoint

regulator also exerts a protective function in MSCs because

Atm null mice and ATM-deficient patients exhibit premature

hair graying (Hakem, 2008) and loss of Atm sensitizes mice to

IR-induced premature MSC differentiation (Inomata et al., 2009).

Despite being located in the same hair follicle niche, BSCs and

MSCs respond very differently to DNA damage. Both types of

SCs do not senesce or commit apoptosis upon DNA damage,

but while BSCs repair their DNA rapidly and express high

levels of antiapoptotic molecules in order to avoid programmed

cell death, MSCs are eliminated by premature differentiation

(Figure 4). These different outcomes imply that cell intrinsic prop-

erties are more important than the local microenvironment in

controlling DDR in skin SCs. It is interesting to note that mela-

noma, a malignant tumor of melanocytes, does not arise from

hair follicle MSCs but rather from skin melanocytes. These cells

are located along the interfollicular epidermis, suggesting that

the premature differentiation of MSCs following DNA damage

may serve to eliminate precancerous MSCs residing in the hair

follicle.

Intestinal SCs

The intestinal tissue is very sensitive to DNA damage. Acute

whole-body irradiation (<6 Gy) induces considerable damage

to the intestine, resulting in severe diarrhea and electrolyte

imbalances, which can be lethal in extreme cases. The intestinal

lining is a simple epithelium composed of a single layer of cells

that can be divided into two compartments: the proliferative

base of the intestine, called the crypt, and the differentiated

intestinal cells forming the villi that face the intestinal lumen.

The intestinal SCs (ISCs) are localized at the bottom of the crypt,

where they proliferate to give rise to transit amplifying cells,

which are found along the crypt, and divide faster and migrate

to the upper part of the crypt where they undergo cell-cycle

arrest and terminal differentiation (Barker et al., 2010; Casali

and Batlle, 2009; Marshman et al., 2002). Although the exact
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position of the ISCs within the crypt is still under intense debate,

it has long been suggested that ISCs reside at the +4 position

from the base of the crypts and that these SCs are more quies-

cent compared to the other crypt cells. Consistent with that

notion, Bmi1, which is preferentially expressed in +4 crypt cells,

induced long-term labeling of the crypto-vilus unit inBmi1CREER

reporter mice, consistent with the labeling of long-lived multipo-

tent ISCs (Sangiorgi and Capecchi, 2008). A second population

of ISCs expressing Lgr5, a leucine-rich orphan G protein-

coupled receptor and Wnt pathway activated gene, has recently

been identified (Barker et al., 2007). Lgr5+ cells cycle more

frequently than the +4 cells and are located at the bottom

of the crypt intercalated between the paneth cells. Lineage

tracing experiments using Lgr5-GFP-IRES-Cre-ERT;;RosaLacZ

reporter mice demonstrated that Lgr5+ cells give rise to all intes-

tinal cell lineages and result in the long-term labeling of the

cryptovilus unit, also consistent with the labeling of long-lived

multipotent ISCs.

ISCs are extremely sensitive to DNA damage and undergo

massive apoptosis upon low doses of irradiation (1 Gy). Interest-

ingly, while it is generally assumed that radiosensitivity is corre-

lated with cell-cycle status (Gudkov and Komarova, 2003), the

apoptosis sensitivity of intestinal crypt cells is inversely corre-

lated with their relative quiescence. The most quiescent ISCs

located at +4 position are the most sensitive to IR-induced cell

death, followed by the more active Lgr5+ ISCs, whereas the

rapidly cycling transit-amplifying cells appear to be the most

radioresistant (Barker et al., 2007; Potten et al., 2002; Wilson

et al., 1998). Different mechanisms are responsible for the

extreme sensitivity of ISCs to DNA damage, including an

enhanced activation of the p53 pathway, lower expression of

the antiapoptotic protein Bcl2 (Merritt et al., 1995), and general

lack of DNA repair activity (Potten, 2004). Upon irradiation,

expression of p53 and its downstream target genes p21 and

puma increases throughout the crypts, but the frequency of

p53-positive cells and the levels of expression of its target genes

are higher at the base of the crypt and progressively decrease

along the crypts toward the vilus (Merritt et al., 1994; Qiu et al.,

2008; Wilson et al., 1998). Furthermore, IR does not induce

apoptosis in the intestine of p53 null mice (Merritt et al., 1994;

Qiu et al., 2008; Wilson et al., 1998). IR-induced ISC apoptosis

is also blocked in puma-deficient mice, and ISC survival is pro-

longed after administration of puma antisense nucleotides,

thereby demonstrating that Puma is the main proapoptotic

target of the p53-mediated DDR in ISCs (Qiu et al., 2008). In

contrast to other SC populations described above, bcl2 expres-

sion is not detected in ISCs and irradiated bcl2 null mice only

show a modest increase in ISC apoptosis, suggesting that

Bcl2 does not play a critical role in protecting ISCs from DNA-

damage-induced cell death (Merritt et al., 1995). Finally, the

absence of an irradiation dose response of crypt degeneration

suggests that quiescent ISCs lack DNA repair capacity, thereby

increasing their propensity to undergo apoptosis following DNA

damage (Hendry et al., 1982; Potten, 2004).

The architecture of the colon resembles that of the small intes-

tine. Similar to ISCs, colonic SCs (CoSCs) are also localized at

the bottom of the crypt and express Lgr5, although CoSCs

exhibit a longer cell-cycle time than ISCs. Interestingly, the

DDR of CoSCs differs significantly from that of ISCs, with CoSCs
being considerably more radioresistant than ISCs (Figure 4). It is

estimated that CoSCs require eight times the dose of irradiation

needed by ISCs to reach similar levels of apoptosis (Barker et al.,

2007; Potten and Grant, 1998; Pritchard et al., 2000). The greater

radioresistance of CoSCs has been attributed to a lower expres-

sion of p53 (Hendry et al., 1997; Merritt et al., 1994) and higher

expression of bcl2 (Merritt et al., 1995; Qiu et al., 2008). Further-

more, in contrast to ISCs, CoSCs from bcl2 null mice show

a much greater increase in DNA-damage-induced apoptosis,

demonstrating that bcl2 expression in CoSCs does contribute

to their higher relative radioresistance. The altruistic suicide

of ISCs in response to DNA damage could decrease the acquisi-

tion of precancerous mutations in these cells and potentially

explain the rarity of intestinal neoplasia compared to the higher

frequency of colonic cancers, despite the higher cellular turnover

of the intestine.

Germline SCs

Primordial germ cells (PGCs) are transient precursors of germ

SCs (GSCs), which uponmeiosis give rise to the gametes (sperm

and egg), which are the only cells capable of transferring genetic

information from one generation to the next (Chuva de Sousa

Lopes and Roelen, 2010; Laird et al., 2008; Richardson and

Lehmann, 2010). PGCs are specified in the embryo, migrate to

the gonadal ridges were they undergo sex determination, and

give rise to the female (oogonia) or the male (spermatogonia)

GSCs. The spermatogonia exhibit an almost unlimited life

span, remaining quiescent until puberty, at which point they re-

acquire the ability to self-renew, undergo meiosis, and produce

mature male gametes for the lifetime of the organism. In sharp

contrast, the pool of oogonia is established during embryogen-

esis, and consequently, females are born with a finite number

of oogonia.

The generation of haploid chromosomes during meiosis

requires many of the proteins involved in DNA repair (Sasaki

et al., 2010). During PGC maturation, genome-wide DNA

demethylation occurs in order to erase genomic imprinting.

DNAdemethylation inmousePGCs is initiatedby theappearance

of single-strand breaks and activation of theBERpathway,which

may be linked to deamination of methylcytosine or to other yet-

to-be-discovered mechanisms (Hajkova et al., 2010). Mutations

in the germ line can be extremely dangerous and can either

directly lead to sterility (Loft et al., 2003) or transmission of heri-

table genetic diseases by the gametes. Genetic aberrations in

GSCs may occur upon radiation exposure, such as radiotherapy

and radiological examination, or after exposure to teratogenic or

mutagenic chemicals, but the main source of DNA damage is

their normal metabolic activity and ROS production (Kujjo et al.,

2010).Microarray analysis uncovered that DNA-damage sensors

and multiple components of the NHEJ, BER, NER, and MMR

pathways are expressed in human oocytes (Menezo et al.,

2007), with a similar high expression of DNA repair proteins found

in human sperm (Galetzka et al., 2007), which suggest that GSCs

and gametes are well equipped to respond to DNA damage.

Accordingly, spermatogonia in Atm-deficient mice are progres-

sively lost, undergo meiotic arrest, accumulate DNA damage,

and lose their self-renewal potential in a p21-dependent manner

(Takubo et al., 2008).Mice expressing the hypomorphicmutation

of Rad50k22m also show severe attrition of spermatogonia, which

could be minimized by loss of p53 (Bender et al., 2002).
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The cell-cycle duration of human spermatogonia is estimated

to be around 16 days, with male GSCs being mostly kept in the

G0/G1 phase of the cell cycle. Consequently, NHEJ is the first line

of DNA repair in these cells. Interestingly, in vitro studies in mice

showed that spermatogonia are more sensitive to IR when they

are quiescent than when they are proliferating (Forand et al.,

2009; Moreno et al., 2001). In oogonia, the homologous chromo-

somes are close to each other and female GSCs preferentially

repair their DNA using HR (Baker, 1971). Mutations in the HR

repair pathway render female GSCs more susceptible to DNA-

damage-mediated cell death as shown by the increase sensi-

tivity to doxorubicin-induced apoptosis in oocytes from mice

deficient in Rad51 (Kujjo et al., 2010). Contrary to most SC pop-

ulations and somatic cells, the DDR in female GSCs does not

depend on p53. Instead, TAp63, an isoform of the p63 gene

and a p53 homolog, is constitutively expressed in oocytes and

is rapidly phosphorylated following DNA damage. Deletion of

TAp63 in mice results in a major increase in oocyte radioresist-

ance, consistent with the notion that TAp63 is the primary medi-

ator of DDR pathway in oocytes (Suh et al., 2006).

Mammary SCs

The mammary gland alternates between cycles of growth and

degeneration in relation to the estrus cycle. Mammary stem cells

(MaSCs) are responsible for homeostasis of the breast tissue

and for the massive tissue expansion and remodeling that

occurs during pregnancy and lactation (Visvader, 2009). MaSCs

have been isolated from mice and humans and represent multi-

potent SCs that have the ability to self renew as well as to differ-

entiate into ductal, alveolar, and myoepithelial cell lineages

(Ginestier et al., 2007; Shackleton et al., 2006; Stingl et al.,

2006). Breast cancer is the most common form of malignancies

in women. Mutations in genes involved in DNA repair such

as BRCA1 and BRCA2 are found in the majority of patients

with hereditary breast cancers, demonstrating the importance

of the HR-repair pathway in preventing the occurrence of

mammary tumors (Bradley and Medina, 1998). Mice deficient

for Brca1 are embryonic lethal, but mice with a conditional dele-

tion of Brca1 in the mammary epithelium are viable, display

severe abnormalities in mammary morphogenesis, and develop

undifferentiated breast cancers (Hakem, 2008). Knockdown of

BRCA1 in human MaSCs leads to a decrease of differentiated

luminal cells and an increase in cells with SC characteristics,

which suggests that BRCA1 is required for normal MaSC differ-

entiation and that BRCA1 loss may result in the accumulation of

genetically unstable MaSCs that are susceptible to cancer

development (Liu et al., 2008).

While the role of DNA repair in mammary development, main-

tenance, and prevention of breast tumors is well established, the

mechanisms underlying the DDR in MaSCs have only just begun

to emerge. Mouse MaSCs are more radioresistant than their

differentiated progeny, and their numbers increase following

IR (Woodward et al., 2007). Interestingly, MaSCs present less

DNA damage and rapidly activate the Wnt/b-catenin signal-

ing pathway following IR. Furthermore, increasing b-catenin

signaling by overexpression of Wnt1 or stabilized b-catenin

increases the survival of MaSCs following DNA damage, indi-

cating that Wnt/b-catenin signaling is an important component

of the DDR in MaSCs that may promote MaSC survival through

upregulation of survivin, a direct Wnt/b-catenin target gene
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(Chen et al., 2007; Woodward et al., 2007). It would certainly

be interesting to determine whether the selective activation of

Wnt/b-catenin pathway observed in MaSCs also occurs in other

tissue-specific SCs and promotes their survival following DNA

damage. Another mechanism that might promote MaSCs resis-

tance to DNA damage is their low level of ROS compared their

differentiated progeny (Diehn et al., 2009).

DNA-Damage Response in Cancer Stem Cells
A number of human cancers, including leukemia, glioblastoma,

breast, and skin cancers, contain cells with higher clonogenic

potential that are capable of reforming the parental tumors

upon transplantation. These cells functionally resemble tissue-

specific SCs, albeit with aberrant self-renewal and differentiation

abilities, and have been collectively referred to as cancer SCs

(CSCs), despite their variable developmental origin (Clarke and

Fuller, 2006; Jordan et al., 2006). It has been suggested that

CSCs are responsible for disease progression and tumor relapse

after therapy. Recent studies indicate that CSCs may take

advantage of the mechanisms of DNA repair used by tissue-

specific SCs to mediate resistance to chemo- and radiotherapy.

CSCs in Leukemia

Leukemias are cancers of the blood system, which often arise

due to deregulated HSC functions or acquisition of extended

self-renewal capabilities by more mature progenitor cells

(Passegue, 2005). Leukemia CSCs exist in acute myeloid

leukemia (AML) and chronic myelogenous leukemia (CML) and

have been shown to be more resistant to cancer therapies

than the bulk of the leukemia cells, indicating that their survival

may be responsible for disease persistence and cancer relapse

(Elrick et al., 2005; Jordan et al., 2006). Leukemia CSCs also use

to their advantage some protective mechanisms of HSCs,

including quiescent cell-cycle status, localization to a hypoxic

niche, and DDR mechanisms, to specifically escape chemo-

and radiotherapy that kill the bulk of the tumor cells (Guzman

and Jordan, 2009).

CML is a two-stage blood disease caused by the acquisition of

the chromosomal translocation fusion product BCR/ABL in

HSCs, which can be separated into chronic and acute phases.

The transition from chronic to acute disease is still poorly under-

stood, but the presence of DNA damage and the acquisition of

additional chromosomal aberrations resulting in overall genomic

instability in both HSCs and their downstream progeny is

believed to play a critical role in this transition (Burke and Carroll,

2010). BCR/ABL expression increases intracellular ROS levels,

which in turn enhances oxidative stress and DNA damage

and deregulates DNA repair mechanisms, thereby promoting

unfaithful and/or inefficient DNA repair leading to mutations

and chromosomal aberrations (Perrotti et al., 2010). Malfunction-

ing MMR, mutagenic NER, and compromised DSB repair (both

HR and NHEJ) are all hallmarks of cells expressing BCR/ABL

(Burke and Carroll, 2010; Deutsch et al., 2001; Slupianek et al.,

2002, 2006). Once DNA damage occurs, BCR/ABL-mediated

signaling can also inhibit apoptosis, thereby allowing cells to

survive DNA damage with which they normally would not be

able to cope (Burke and Carroll, 2010; Deutsch et al., 2001;

Slupianek et al., 2002, 2006). The genomic instability induced

by BCR/ABL has major implications for the pathogenesis and

treatment of CML since it can facilitate disease progression
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from chronic to acute phase and promote the acquisition of

resistance against the current drugs used to treat CML (tyrosine

kinase inhibitors such as imatinib). Indeed, evolution from HSC-

derived CSCs to myeloid progenitor-derived CSCs has been

observed during the transition to myeloid blast crisis in human

CML and has been linked to activated mutations in the Wnt/

b-catenin pathway and acquisition of aberrant self-renewal

activity in HSC progeny (Rice and Jamieson, 2010). Preventing

oxidative stress and correcting defects in DNA repair pathways

in BCR/ABL-expressing CSCs at all stages of the disease may

therefore be beneficial to limit the acquisition of drug resistance

and slow down CML progression (Koptyra et al., 2006; Perrotti

et al., 2010).

Leukemia CSCs maintain some of the same protective mech-

anisms as normal HSCs. CSCs in both CML and AML have been

found to be quiescent (Elrick et al., 2005; Guan et al., 2003; Ishi-

kawa et al., 2007), suggesting that cell-cycle restriction is one of

the protective mechanisms that leukemia CSCs utilize to their

advantage (Guzman and Jordan, 2009). Indeed, human AML

CSCs transplanted into immunodeficient mice use quiescence

as a protective mechanism against chemotherapy (Saito et al.,

2010). When these cells are induced to exit quiescence and to

enter the cell cycle by treating the mice with the cytokine

G-CSF, AML CSCs become more sensitive to chemotherapy

and are effectively eliminated in vivo. Leukemia CSCs are also

able to co-opt other mechanisms used by normal HSCs for their

protection, such as p53-mediated induction of p21 and resulting

growth arrest that has recently been found to be critical in pro-

tecting adult HSCs from IR (Mohrin et al., 2010). Expression of

the PML/RAR or AML1/ETO fusion oncoproteins in murine

HSCs induces high levels of DNA damage and activates a p21-

dependent cell-cycle arrest in AML CSCs, which allows them

to repair excessive DNA damage and to escape apoptosis,

thereby maintaining their leukemic self-renewal capacity (Viale

et al., 2009). While it may seem paradoxical that a leukemia-initi-

ating oncogene promotes cell-cycle arrest instead of prolifera-

tion, the hijacking of such a protective mechanism provides

a strong selective advantage to the CSCs. In the absence of

p21, AML CSCs were more sensitive to replicative and thera-

peutic stress, and p21 null HSCs expressing PML/RAR or

AML1/ETO were unable to transplant the disease into recipient

mice, indicating a failure to maintain CSC activity (Viale et al.,

2009).

CSCs in Breast Cancer

The first evidence that solid tumors also contained cells with

CSC properties came with the demonstration that in human

breast cancer, CD44+CD24�/lo cells are more clonogenic and,

when transplanted in immunocompromized mice, are able to

generate tumors that recapitulate the parental disease (Al-Hajj

et al., 2003). Transcriptional profiling of murine mammary gland

CSCs revealed increased expression of many DDR and DNA

repair associated genes (Zhang et al., 2008), suggesting that

mammary gland CSCs might be more resistant to chemo- and/

or radiotherapy. Comparison of tumor biopsies before and

after neoadjuvant chemotherapy showed an increase in the

proportion of mammary gland CSCs with mammosphere-form-

ing capacity following chemotherapy, hence confirming that

mammary gland CSCs are more resistant to chemotherapy (Li

et al., 2008; Shafee et al., 2008). Like normal MaSCs, mammary
gland CSCs harbor lower levels of ROS compared to the rest of

the tumor cells, due to increased levels of genes regulating free

radical scavenging systems, such as those of the glutathione

metabolism. Mammary gland CSCs from human xenografts

(Phillips et al., 2006) or MMTV-Wnt1 tumor-bearing mice (Diehn

et al., 2009) exhibited higher survival upon IR treatment. Consis-

tent with the fact that ROS levels control IR-induced DNA

damage and apoptosis in CSCs, inhibition of glutathione metab-

olism decreased the clonogenic potential and sensitized

mammary gland CSCs to IR (Diehn et al., 2009). Furthermore,

p53-deficient mammary gland CSCs show accelerated DNA

repair activity as well as high Akt and Wnt signaling activity,

which promotes CSC survival following IR treatment (Zhang

et al., 2010). Interestingly, administration of an Akt inhibitor

inhibits b-catenin signaling and sensitizes mammary gland

CSCs to radiotherapy.

Understanding the role of DNA repair genes in the pathogen-

esis of breast cancer has been exploited for the development

of novel anticancer strategies. Tumors derived from Brca1-defi-

cient cells are extremely sensitive to the inhibition of PARP,

which plays an important role in the repair of single-strand

breaks by the BER pathway. In the absence of Brca1 and HR-

mediated DNA repair, persistent single-strand breaks need to

be repaired by the BER pathways, and as a consequence, inhi-

bition of PARP blocks this alternative pathway of DNA repair,

inducing cell death preferentially in cancer cells. A PARP inhibitor

prolonged disease-free survival when administered alone or in

combination with chemotherapeutic drugs in a mouse model

of brca1-deficient mammary gland tumors (Rottenberg et al.,

2008) and also exhibits clinical efficacy in human breast cancers

(Fong et al., 2009).

CSCs in Glioblastoma

Glioblastoma multiform (GBM) represents the most aggressive

type of brain tumor. The standard treatment combines surgery

and radiotherapy, but still, most patients relapse after therapy,

with a median survival of less than 12 months (Prados and Levin,

2000). CSCs from human glioblastoma have been isolated

based on the expression of prominin (CD133) (Singh et al.,

2004). Irradiation of human GBM xenografts led to increased

proportions of CD133+ cells, indicating that CSCs may be

responsible for tumor relapse after radiotherapy (Bao et al.,

2006). CSCs from GBM are more resistant to IR-induced cell

death compared to non-CSCs and show more robust activation

of DNA-damage checkpoint proteins, including ATM, Chk1, and

Chk2, as well as more efficient DNA repair activity. Importantly,

treatment with inhibitors of Chk1 and Chk2 kinases sensitizes

CSCs to IR-induced cell death, suggesting that inhibition of

DNA-damage checkpoint in CSCs may improve the efficiency

of radiotherapy in GBM (Bao et al., 2006). However, this increase

in DNA repair activity was not observed in all glioma-derived cell

lines (Ropolo et al., 2009), and loss of Chk2 instead potentiates

GBM radioresistance in mice (Squatrito et al., 2010), indicating

that this characteristic may be related to certain glioblastoma

subtypes. Moreover, glioma stem cell-like cells have been

shown to exhibit elevated levels of the antiapoptotic protein

Mcl1 that contributes to their radioresistance (Tagscherer

et al., 2008). Temozolomide, the most commonly used chemo-

therapy in the treatment of GBM that induces cell death by trig-

gering the methylation of guanine at position 6, which can be
Cell Stem Cell 8, January 7, 2011 ª2011 Elsevier Inc. 25
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removed by the methylguanine DNAmethyltransferase (MGMT),

induced CSC depletion in MGMT-negative, but not in MGMT-

positive, GBM (Beier et al., 2008).

Future Directions
The study of DDR in different types of tissue-specific SCs has

clearly highlighted the existence of common mechanisms acting

in certain adult SC populations to limit the amount of DNA

damage, to restrain them from undergoing massive apoptosis

and being exhausted following DNA damage, and to preserve

overall tissue function. These protective mechanisms may

have a cost for these tissue-specific SC populations, such as

blood HSCs and hair follicle BSCs, as they preserve immediate

survival at the expense of long-term maintenance of genomic

integrity, which may lead to aging, tissue atrophy, and/or cancer

development. Further studies are required to fully understand

and ultimately prevent the long-term deleterious consequences

of these protective mechanisms. In contrast, some tissue-

specific SCs, such as intestinal SCs, are not well protected

and undergo massive death after DNA damage. More studies

are needed to better understandwhy someSCs prefer to commit

suicide after DNA damage while others decide to survive, as well

as to understand how altruistic suicide might provide a selective

advantage to overall tissue function and what molecular mecha-

nisms dictate these very different outcomes.

Most of the studies on DDR in tissue-specific SCs have been

performed in adult animals during normal, or homeostasic,

conditions. Since the activity and relative quiescence of SCs

varies considerably during organogenesis, adult homeostasis,

and tissue repair following injuries, the consequence of DNA

damage might be very different in SCs at different ontogenic

stages or levels of activity, as it has now been shown for fetal

and adult HSCs. During organogenesis and tissue regeneration,

SCs divide more frequently, whereas during homeostasis,

SCs are more quiescent. Since different mechanisms of DNA

repair are used depending on the cell-cycle stage of the

damaged cells, are HR and NHEJ repair pathways differentially

important to preserve SC fitness depending on their activation

state? Are DNA repair-associated genes differentially activated

during morphogenesis, homeostasis, and regeneration? Do

mice with defective NHEJ or HR repair genes present different

phenotypes when these genes are ablated during embryonic

development compared to adult life? Future investigations are

needed to fully comprehend the role of these different DNA repair

mechanisms in SC biology.

In addition to the conserved set of genes that act in DDR and

DNA repair pathways, some miRNAs have recently been shown

to be induced by p53 in response to DNA damage and play an

important role in DDR outcomes of survival versus apoptosis

by interacting with key tumor-suppression networks (He et al.,

2007). Irradiation of cultured cells uncovered the involvement

of miR-34a in promoting apoptosis (Chang et al., 2007) and of

miR-192 and miR-215 in cell-cycle arrest induction (Georges

et al., 2008). Moreover, miR-34a is lost in several cancer cell

lines (Chang et al., 2007). Future studies will determine whether

DNA damage and repair-associated miRNAs are differentially

expressed in tissue-specific SCs compared to their differenti-

ated progeny and whether these miRNAs modulate the DDR in

different types of tissue-specific and cancer SCs. Another
26 Cell Stem Cell 8, January 7, 2011 ª2011 Elsevier Inc.
important question is whether CSCs from different types of

cancer also exhibit a survival advantage following chemo- and

radiotherapy. If so, is this resistance related to enhanced DNA

repair mechanisms or higher expression of antiapoptotic

factors? Do CSCs retain the DNA repair properties of the SCs

of their tissue of origin, or do they acquire functionally similar

characteristics during cancer progression through a selective

pressure? Do DDR abnormalities in CSCs versus bulk cancer

cells account for the vast genomic instability present within the

bulk of the tumors? Progresses in next generationwhole genome

sequencing and further studies of defined CSC populations will

be needed to assess how defects in their DDR contribute to

cancer evolution and associated genomic or base-pair level

changes.

Addressing these open questions will have profound implica-

tions for our understanding of how tissue-specific SCs respond

to DNA damage and maintain the integrity of their genome, how

deregulation of these mechanisms leads to cancer and aging,

how CSCs respond to chemo- and radiotherapy, and how these

characteristics may be exploited to increase the efficacy of

current anticancer treatments.
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